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I. INTRODUCTION

In applying the Uniform Geometrical Theory of Diffraction (UTD) to
antenna radiation problem involving curved surfaces, a major task is to
determine the final diffraction point and the geodesic path on the
curved surface. For the antennas mounted on the fuselage of an
aircraft, the fuselage can be modeled as an ellipsoid in the UTD
analysis. Geodesic paths on an ellipsoid have been studied in detail in
References [2,3] using an elliptic cone perturbation method which is
very efficient.

Using this perturbation method and another numerical technique,
which will be given in this report, the radiation patterns for ellipsoid
mounted antennas is efficiently obtained. The theoretical UTD concept

to calculate actual radiation fields is given in References [1,21.

IT. NUMERICAL TECHNIQUE
A, INTRODUCTION

The ellipsoid simulated by a perturbed elliptic cone model is
examined here, Since the elliptic cone is a developable surface,
geodesics can be easily obtained [2,3]. Given a radiation direction
(%, ), one can find the final diffraction point (9, ¢Q) by following

the geodesic path, step by step, until the geodesic tangent coincides




with the radiation direction (9, ¢¢). This is a rather tedius and time
consuming process if applied for each new radiation direction.
Considering a new radiation direction, which does not deviate greatly

from the previous direction, one should be ahble to develop a solution

which uses the properties of the surface and the previous geondesic path
to find the new diffraction point. Such an approach is attempted here
to make this solution as efficient as possible.

Since the field decays exponentially along the ray path on the J
surface, it is assumed that only one or possibly two dominant rays exist
in the problems treated. One is referred to References [2,37 for more

details on this topic.

B. NUMERICAL APPROACH FOR PATTERN CALCULATION

Assuming the diffraction point is located at Q (a cos ve cos vp,
b cos ve sin vp, ¢ sin vg) and the field point at P (Ry sin 9 cos o,
Rt sin 9% sin 3, Ry cos *), then at the diffraction point Q the

radiation direction (3¢, o) should coincide with the geodesic tangent t

as shown in Figure 1., Thus,

~

tl cos B + te sin B

where
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Figure 1. Geodesic path from the source on an ellipsoid.
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When the source is located at the off-mid section (z # 0 in Figure
1), the ellipsoid is modeled by a perturbed elliptic cone. The
assnciated unfolded surface is shown in Figure 2(b). If y and 3 denote

~ ~

the angle between t and typ at Q' and 0, respectively, it is seen that

= ¢ - a, With some manipulation, one can show that the perturbed

geodesic path can be expressed as follows:




4 (a) TRUE ELLIPTIC CONE

(b) UNFOLDED PLANAR SURFACE {

Figure 2. Geodesic path on a developed elliptic cone. g




re cos (y-a) = rg cos y (4)
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Next, {[tybcosVp + tyasinVrlccosVe + tzabsinVel yields
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!
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b
-abc =9 . (6)
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Three functions can, then, be constructed as follows from Equations (4)-
(6):
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Provided that one has obtained a diffraction point (Va, V) for a
receiver location (Ry, 9%, &t), @ numerical technique can now be
developed from Equations (7), (8), and (9) to solve for (Vg + AV, Vp +
AVp) associated with a new receiver location (Ry + AR¢, 9 + A%, ¢ +
As ). Assuming that the ith set of (Rts %, %t» Va, Vp) is first known
to satisfy Fj = Hi = G; = 0, or at least approximately so, the next set
(Ry + "Ry, ¢ + A%, ¢ + Adp, Vo + AVg, Vo + AVR) is obtained by

enforcing Fij41 = Hij+1 = Gj+1 = 0, such that i

Fi+1 = Fi + FV AVe + FV AVr + FYAY =0 .

e r

P}
i
o
+
(72}
-
<

Y941 i v e * Gy N+ GYAY

and

Higp = M+ Hy

In matrix form, it is given by

Fy F F A -F3 -
Ve Vr‘ Y Ve i
1
G G G A = -G; - G A - G4 A - Gp A
Vo Ve V. L e L L
H H 0 Ay -H: - Hna A - Hy A - Hp A .
Vo V. L
- - - - - ~ (10) 1§
i
1n

-
N .
T—‘
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Note that the partial derivations are given by the following:
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Hve = ab cosVecoset - s1nvesm9t(a51n¢tsmvr + bcos¢tcosvr)
Hvr = C cosVe s1n6t (asmcptcosvr - bcos¢ts1nvr) |
\
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§ It is seen that one can solve for (AVg, AV, Ay), for a known (ARy, A9,

Aat), using Equation (10). To obtain a diffraction point (Ve, Vp) for a

given receiver location (R¢, 9, #t), one can always assume the first

diffraction point is at the source (Va, Vp) = (Veg, Yrg) with the

~

radiation direction (9f, ¢f = %) for the positive ray (in Y direction)
or (?f, e = %ﬁ) for negative ray (in -Y direction), and gradually add

the increments (ARt, A%t, A¢t) until the final radiation direction

(%, »t) is reached as shown in Figure 3. More detail on this topic is
provided in Reference [4]. One need not start out from the source
everytime, but obtains the new diffraction point directly from Equation
{10), provided that the new receiver location does not deviate greatly
from the previous direction.

After the geodesic path is determined, various other parameters
associated with actual field calculation must be found. The Fock

parameter © was calculated in Reference [27] as follows:
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Figure 3. Iliustration of the diffraction point finding for a
[ given receiver location,
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klcogéﬁ + k7sin?ﬂ 1 2

are two principal

curvatures.

Next, the ray divergence factor is defined as the change

vVodo

in the separation of adjacent surface rays as shown in Figure 4. Since

dL')O Q_rj'
EEICHN

the ellipsoid simulating the aircraft fuselage will be long and slender,
it is assumed that the ray divergence factor is unity in the analysis.
This completes the elliptic cone perturbation solution for the

antenna mounted on the off-mid section of an ellipsoid,
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Figure 4. Illustration of the divergence factor (Ydus/d¥) terms.
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[IT. RESULTS

The solutions presented in the previous chapter are employed to
compute the near field radiation patterns for short monopoles or slots
mounted on an ellipsoid.

To examine different conical pattern cuts, a cartesian coordinate
system (x',y',z') originally defining the ellipsoid geometry is now
rotated into a new system (x,y,z) as shown in Figure 5. Note that the
new cartesian coordinates are found by first rotating about the z'-axis
a angle o and then about the y-axis a angle .. The pattern is, then,
taken in the (x,y,z) coordinate system with % fixed and op varied.

To show the validity of the elliptic cone perturbation solution,
some typical sources, i.e., Short monopole, axial slot and
circumferential slot, and various source locations are chosen as shown
in Figure 6,

For each case the following typical radiation patterns are

obtained:
a) ¢ = 0° s =90°, 95 = 90° {roll plane pattern)
b) ¢ = 30°, b = 90°, 3 = 90°
c) N = 60°, 5 = 90°, 95 = 90°
d) 9 = 907, 5 = 90°, 9y = 90° (elevation plane pattern)
e) % = 90°, o = 0° 25 = 90° (azimuth plane pattern).

The radiation patterns ohtained by the ellipsoid program, which
uses an ellipsoid to simulate the aircraft fuselage, are compared to

those obtained using the spheriod solution [5] in each case.

18
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[t is noted that the geodesic tracing method of the ellipsoid
program for the side mounted antennas (Figures 9, 10, 11, 14, 15, 18,
19) is different from that of the spheroid program because the ellipsoid
is not a surface of revolution.

The exact agreement between the results of the ellipsoid program
and the spheroid program as shown in Figures 7-19 gives one confidence
about the validity of the elliptic cone technique.

Next, the ellipsoid program is employed to calculate the radiation
patterns due to antennas mounted on an ellipsoid surface. The typical
ellipsoid geometry (2x x 4X x 10)) is chosen and examined for various
sources and source locations.

The cone boundary shown in Figure 32 is used in determining whether
one or two rays are used in the solution. Note that ?yp is defined
automatically by determining the caustic angle in the elevation pattern
(2c) and adding a few additional degrees to that value, i.e., 812 =
3¢ + A where 2° < 23 < 10°. One would expect to observe slight
discontinuities somewhere, because various numbers of rays are included

in different regions.

[V, CONCLUSIONS

The object of this study has been to develop an efficient numerical
solution for the high frequency radiation patterns of an ellipsoid-
mounted antenna. The UTD is used in this study to calculate the

radiation patterns, and the elliptic cone perturhation method is applied

21




to simulate the geodesic paths on the ellipsoid, which in turn can be
used to model an aircraft or missile fuselage. For a given radiation
direction in the shadow region, the geodesic path and final diffraction
point on the ellipsoid can, then, be found via an efficient numerical
approach,

The exact agreement of the radiation patterns from two different
programs confirms that this elliptic cone perturbation solution is very
useful in predicting the high frequency radiation patterns for antennas
mounted on the off-mid section of an ellipsoid,

This numerical solution will be employed, along with flat plates to
construct a general solution for calculating radiation patterns due to

airborne antennas,

27
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\\‘M‘ - (c)9c=80°,¢c=m°,9p=m°
ElLlipsoid Program Spheroid Program

Figure 7. Comparison of radiation patterns for Ry = 15X for a short
monopnle mounted at ¢¢ = 0°, 9 = 60° on a 21 x 10A
spheriod,
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)

Ellipsoid Program Spheroid Program

Fiqure 7. (continued)
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Ellipsoid Program Spheroid Program

Figure 8. Comparison of radiation patterns for a short
monopole mounted at &g = 0°, 85 = 30° on a 2 x 10A
spheriod.
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(c)@¢ =60°, pe=20°, 9p=90°

Ellipsoid Program Spheroid Program
Figure 9. Comparison of radiation patterns for a short
monopole mounted at ¢g = 30°, 65 = 60° on a 21 x 10A
spheriod.




el B, =93°,¢c:0°,gp -ag®

S s
Ellipsoid Program pheroid Progrem

Fiquee 9, (continued)




(C)ec=60°. ¢c=m°,9p =gn°
Eltipsoid Program Spheroid Program

monopole mounted at ¢ = 30°, 9¢ = 30° on a 2X «x

' Figure 10. Comparison of radiation patterns for a short
10X spheriod.
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(2160, $c=0%, Bp=0°

; .
Etlipsoid Program Spheroid Progrem

Fiqure 10, ({continued)
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(c) 8 =60°, ¢ =20°,60, =:0°

Ellipsoid Program Spharoid Progrem

Figure 11, Comparison of radiation patterns for a short
monopole mounted at ¢ = 30°, 6; = 120° on a 2X x
10X spheriod.
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(e) §c=%0°, ¢ =0°,8,=20°

ElLlipsoid Program

Figqure 11, (continued)
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— RO - 0\\.4_// 1
(c) B =60°, ¢ =30°, =90 .
Ellipsoid Program Spheroid Program

Figure 12, Comparison of radiation patterns for an axial
slot mounted at 4¢ = 0°, A = 60° on a 2.1 x
10X spheriod.
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(e) B¢ =20°, ¢pc=0°,6p =:0°
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Figqure 17, (zontinued)
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Figure 13, Comparison of radiation patterns for an axial
slot mounted at & = 0°, 9 = 30° on a 2) x
10\ spheriod.
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(e) §, =20°, =0 ,Bp 0

ElLlipsoid Program

Figure 13. {continued)
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() 6-0°, b, =0°, 0, =c0°

Spheroid Program
Ellipsoid Program

Figure 14. (continued)

38




mm \
~J‘

|
a_!.,k_ _<Wv77\'/ l

3 £ \
/N\ A

i \\\«/3\ r

7
v
- ic) 8, =60°, ¢ =%0°,8

=m°
Etlipsoid Program Spheroid Program

P

Figure 15. Comparison of radiation patterns for an axial
slot mounted at &g = 30°, 95 = 30° on a 2X x
10 spheriod.

39




oo
O e
S [ h £
LSO AN
::' ¢ B ;/" N \: : \ ' :
270°w \‘ \I P |o}aa ,90
\\4 NA /
- l80°’
(d) , =20°, ¢ =20°, 6, =20°
e t \‘\;»\
/,/ ) . "- | \\,&\ \\\\.
/ / 7\\\\\"\'“[ a -ﬁ\/x\ ) \\\
i/ 71'\'\\ | ‘ '
Fii ‘{:?P‘ T w
X i f {
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Fiqure 15, {continued)
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b

" (c) B¢ =60°, pe=0°, 8=

Ellipsoid Program

~ ! -

0 et

Spheroid Program

Figure 16. Comparison of radiation patterns for a circumferential
slot mounted at g = 0°, 8¢ = 60° on a 2% x 103

spheriod,
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| Figure 16, (continued)
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—Rn© _
{c) GC =60°, ¢c_w°' ep =ggo

ElLlipsoid Program Spheroid Pragram

Figure 17, Comparison of radiation patterns for a circumferential
slot mounted at &g = 0°, Ag = 307 on a 2y x 10X
spheriod,
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(c) 8c=60°v ¢c =90°, ep =§?'N'L
Etiipsoid Progrem Spheroid Program

Comparison of radiation patterns for a circumferertial

slot mounted at &g = 30°, 8¢ = 60% on a 2i x 10N

spheriad,

Frqure 18,




(e) ec =m°, ¢c=0°, ep =900

Ellipsoid Program Spheroid Program

Fiqure 18, (continued)
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L (c18¢=60°, pe=2°, 8 p=20°

Ellipsoid Program Spheroid Progrem

3

vgure 19, Comparison of radiatinn patterns for a circumterential
slat mounted at 4g = 30°, g = 307 on a 2x x 10)
spherioa,
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-

{e) 9c=&)°,¢c =o°'9p =gpe°

Fiqure 20, Radiation patterns for Re = 15Xx for a short monopole

mounted at o¢ = 0°, Ag = 60° on a 2% x 4X X 10X

ellipsoid,
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¥
§
(d) 9c=m°'¢c;mo' epzmo (e]9c=mo' ¢C=0°vep =g0°
Figqure 21, Radiation patterns for a short monopole mounted
at 4g = 0°, 65 = 30° on a 2X x 4\ x 10X ellipsoid.
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(a) 9c=m°,¢c=m°'9p =g0° ‘SJQC =m°!¢c=0°,9p=m°

' Figqure 22. Radiation patterns far a short monopnie mounted
at &g = 30°, % = 607 on a 2Xx x 4\ x 101 ellipsoid.
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(d) 6 =90°, ¢ =90°, 6, =20°

Figure 23. Radiation patterns for a

52

short monopole mounted
at pc = 30°, 9% = 30° on a 2x x 4x x 10X ellipsoid.




(d) 8c=m°,¢c=m°,99=m° (619c=90°.4>c =0°,6p =g0°

Figure 24, Radiation patterns far an axial slot mounted
at ¢g = 0°, 8¢ = 60° on a 2x x 4X x 10X ellipsoid,

~3




]
{
()8, =20°, . =20°, 6, =a° tel 8, =9°°»4’c=0°.9p =g0°
Frgpurs 25, Radiation patterns for an axial slot mounted
¢ at bg = 0% A = 30° on a 2x x 4x x 10X elliipsoid.
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(a) §.=90°,¢ =90°,6,=%0° (e) 8.=90°, ¢ =0°, §p=a0°

]

Fiqure 26. Radiation patterns for an axial sict mounted
at ¢g = 30°, 85 = 60° on a 2% x 4% x 10X ellipsoid.
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{e) =90° =n° JEPRP
(d]gc =m°'¢c=w°vep —50° 9c .¢'c (0] ,Gp =90

i Figure 28. Radiation patterns for a circumferential slot mounted
at g = 0°, 85 = 60° on a 2% x 4) x 10X ellipsoid.
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entr 1 slot mounted

or a ci
° a 2\ x 4x x 10\ ellipsoid.
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(d) B =%0°, P, =%0°, 6, =20°

Figure 30. Radiation patterns for a circumferential slot mounted
at &g = 30°, 3¢ = 60° on a 2x x 4\ x 10X ellipsoid.
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